汽车等速传动轴采用精密锻造成形加工方法,需要经过一道冷精整工序,冷精整为锻件最终成形工序,尺寸精度要求高,球道的冷精整尺寸及表面质量直接影响到传动轴的使用寿命,而该工序的加工主要依靠冷精整模具来保证。冷精整为冷加工变形,变形抗力大,摩擦力大,冷精整模具服役过程中承受拉伸、挤压、冲击、摩擦等机械力反复作用,从而可能产生变形、开裂、崩块、剥落、断裂、磨损、拉毛、粘合、疲劳等失效形式,因此该模具需具备抗变形、抗断裂、抗磨损、抗粘合及耐疲劳的能力。需要具备较高的硬度、强度、韧性、耐磨性、尺寸稳定性及耐疲劳性能。
冷精整模具失效会导致锻件的尺寸超差,产生拉毛、表面凹坑、凸起、毛刺、裂纹等质量缺陷。冷精整模具寿命的高低直接关系到生产成本、产品质量和模具库存,提高模具寿命是降低模具消耗的有效途径。
冷作模具主要用于制造对冷状态下的工件进行压制成形的模具。冷精整模具属于冷作模具,作为冷挤压模具的一种。
在一定的服役条件下,其寿命影响因素主要有:①模具材料,冷作模具材料有碳素工具钢,合金工具钢、高速工具钢、硬质合金、钢结硬质合金、粉末高速工具钢、粉末高合金模具钢等,模具材料必须满足模具对塑性、韧性、强度、硬度、抗疲劳等性能要求;②模具结构,包括几何形状、模具间隙、断面倾斜角、过渡角大小等;③热处理及加工制造工艺,热处理不当可能产生热处理缺陷,模具制造工艺不合理,则达不到碎化晶粒,改善方向,提高致密度的目的,模具切削加工应严格保证过渡处圆角半径、圆弧与直线相接处应光滑,保证工作部位光滑无刀痕。
实际生产过程中我们对失效模具长期统计分析发现,85%的冷精整模具报废原因为磨损,磨损引起尺寸超差和表面拉毛(图1),因此提高冷精整模具耐磨性同时又不降低强度、韧性、尺寸稳定性以及耐疲劳性等是提高其寿命的关键。提高耐磨性的方法很多,而模具结构的优化往往受到产品设计结构限制较多,模具材料的选型往往涉及较高的材料成本,靠热处理及加工制造工艺改进大幅提高耐磨性的难度大、成本高。
由于磨损发生在模具表面,而表面性能的改良往往不影响基体的强度、韧性等性能指标,如今的表面改性技术取得了很大进步,其中涂层技术已经广泛应用于提高刀具表面性能,随着涂层技术的快速发展,新型超硬涂层、纳米涂层等先进涂层不断涌现,为模具寿命提升提供了很好的技术条件和研究方向。本文主要尝试从涂层表面改性技术角度来验证提高模具寿命。
涂层的种类很多,按照涂层化学元素分可分为钛基涂层、氮化物涂层、碳化物涂层、Al2O3 陶瓷涂层等。按照涂层结构分可分为单层涂层、多层涂层以及纳米多层涂层等。常见的模具涂层有TiN、TiC、TiCN、TiSiN、TiAlN、TiAlSiN、CrAlSiN、AlTiCrN、CrAlN。
选择不同性能的涂层材料和不同的工艺方法,可制备耐腐蚀、抗高温氧化、热障涂层、减摩耐磨、导电、绝缘等功能涂层。另外,涂层材料涉及也比较广泛,很多固态工程材料都可以应用到,包括金属、合金、陶瓷、金属陶瓷、塑料、金属塑料以及他们的复合材料和其他无机非金属材料。
TiN 是最早商业化应用的涂层,20 世纪80 年代就被应用于高速钢钻头,目前TiN 涂层是工艺最成熟,应用最广泛的涂层,能够提高材料硬度,改善材料摩擦性能,提升刀具和模具使用寿命。但TiN 涂层抗高温氧化性能较差、加上摩擦因素还是偏高、硬度还是偏低,发展受到了限制。TiN 涂层之后衍生出了很多以TiN 为基的涂层,比如TiCN、TiAlN、TiAlSiN。
TiCN 涂层是在单一TiN 晶格中,由碳原子占据氮原子点阵中的位置而形成的复合化合物,具有较好的耐磨性和低摩擦因素,其抗高温氧化温度可达400℃。
TiAlN 涂层与TiN 相比具有膜基结合力强、耐腐蚀性好、耐磨性好等特点。Al 和Si 原子置换fcc 结构的TiN 晶格中的Ti 原子位置,形成TiAlSiN 固溶体,Al 原子半径小于Ti 原子,会引起晶格畸变,使晶格常数减小,起到固溶强化作用,提高了涂层强度和硬度,其抗高温氧化温度可达800℃。
TiAlSiN 涂层有着优良的性能。TiAlN 涂层在沉积生长过程中易于获得柱状生长的粗大晶粒,随着Si 元素的加入,TiAlSiN 涂层的柱状晶明显减少,Si 原子置换fcc 结构的TiN 晶格中的Ti 原子位置,形成TiAlSiN 固溶体,Si 原子半径小于Ti 原子,会引起晶格畸变,使晶格常数减小,提高了涂层强度和硬度;当Si 原子含量增多时,涂层中会出现非晶Si3N4 相,形成Si3N4 相包裹TiAlN 纳米晶的复合结构,对涂层晶粒长大起到抑制作用,能够提高涂层强度和硬度。有研究表明,随着Si 元素的加入,TiAlSiN 涂层摩擦系数会降低,其抗高温氧化温度可达1000℃。
CrAlN 涂层是Cr 基涂层,具有优良的抗氧化、耐腐蚀、抗粘结性能,在金属成形,注塑注模,高速切削等领域具有广泛应用价值。高速摩擦时,CrAlN涂层中的Cr、Al 元素与空气中的O 反应形成Al2O3、Cr2O3 氧化膜,具有抗氧化、耐腐蚀、耐磨、隔热作用,其抗高温氧化温度可达1100℃。
TiN、TiCN 涂层在模具上的应用较多,而TiAlN、TiAlSiN和CrAlN涂层在等速传动轴冷精整模具上应用较少,相关文献资料给出的涂层物理性能参考数据见表1。在一定的工况下,本方案选用TiCN、TiAlN、TiAlSiN 和CrAlN 四种涂层用于等速传动轴冷精整模具上进行对比试验,确定最优的模具涂层类型。
模具零件表面涂层技术是利用物理或化学方法,在模具零件表面通过熔覆、喷涂、沉积等工艺方法,涂覆一层与模具基体不同的薄膜,通过与模具基体的结合,提高模具零件表面性能,如硬度、耐磨、耐蚀、抗高温氧化等,保证模具零件的服役稳定性,并延长其使用寿命。表面涂层技术的发展路径可以分为两段:一是以传统的表面涂层技术为代表,主要包括电镀、化学镀和热扩渗等;二是现代表面技术阶段,以等离子体、激光、纳米颗粒的应用为代表。现阶段表面涂层技术在向着梯度化涂层结构设计和复合技术应用的方向发展,工业生产中常用的表面涂层技术有热喷涂、电镀与化学镀、化学和物理气相沉积、激光熔覆等,这些表面处理方式都有其固有的技术特征,在实际应用中要根据模具的使用要求和使用条件进行选择。
热喷涂技术是利用电弧、激光束、等离子体等高温热源将喷涂材料加热至液态或软化,再通过高速喷射将喷涂材料雾化成微颗粒并沉积到预先处理好的基体表面形成涂层的一种强化方法。热喷涂材料具有涵盖全部固体工程材料(金属、合金、陶瓷、塑料以及它们的复合物等)、基体受热影响较小、操作简便、区域灵活等特点。工业生产中常用的热喷涂技术是将金属基防滑耐磨涂层沉积在模具零件表面,提高模具零件在耐磨及耐蚀等方面的性能,以此改善模具的使用寿命和服役稳定性。
研究人员通过涂层耐磨性试验测试对比发现,采用电弧喷涂的FTC-FeCSiMn涂层使模具零件表面的耐磨性提高了10倍,而采用超音速火焰喷涂的超细WC-12Co涂层使模具零件表面的耐磨性相较电弧喷涂的FTC-FeCSiMn涂层又提升了1倍,经工艺优化后,显微硬度达到1 547 HV0.1,热喷涂工艺的进步对改善涂层质量具有较大的优势,并延长了模具的使用寿命。
马宪图等使用等离子喷涂技术在4Cr5MoSiV1热作模具钢基体表面制备WC10Co4Cr耐磨涂层。涂层主要由WC颗粒形成的骨架结构组成,骨架间的空隙可以储存润滑剂,有助于增强润滑效果,涂层中含有少量W、Co、Cr颗粒和W2C相。涂层中元素分布均匀,无明显的聚集,涂层和基体间结合紧密,达到了冶金结合。磨损机理主要是磨粒磨损,同时还伴有一定程度的粘着磨损,WC10Co4Cr涂层最大摩擦系数为0.47,经过磨耗试验,磨耗较少,可降低磨损量,延长模具使用寿命。
由于铝熔体的强腐蚀性以及铸造过程中热扩散和高机械负荷,为了改善铸造模具服役稳定性和使用寿命,采用烧结镶嵌的高钨伪合金,提升模具零件的强度、耐蚀性与耐高温氧化性,可延长铸造模具寿命1 000倍。为了控制制造成本,使用等离子转移弧堆焊(PTA)制备致密镀层代替高钨伪合金烧结镶嵌,会造成模具基体高热量输入。研究结果表明,显微结构和致密度满足要求的涂层可以通过改变喷涂参数制备,为了减少铸造模具零件变形,需要降低基体热量输入。通过使用高能量密度的热源,控制喷涂时间,提高喷涂速度,能有效减少热量输入对基体性能的影响,同时可以改善熔融结合区的性能,涂覆制备致密、高结合力的涂层。如激光喷涂和等离子体喷涂,可用来制备铸造模具零件的涂层。
在未来,热喷涂技术会向着不断改善沉积效率,并提高涂层结合力与致密度的方向发展,同时对沉积过程参数的精密控制必将是智能化的发展趋势。
化学气相沉积(chemical vapor deposition,CVD)技术是通过利用涂层内化学元素的化合物或单质,控制其在基体表面进行反应并沉积,生成固态沉积物。上世纪Metallgesell-Schaft公司首先将TiC涂层沉积在钢基体上进行表面强化,CVD沉积技术的应用也于上世纪在硬质合金上获得成功,国内是上世纪70年始研究,现已应用于工模具、机械零件,效果显著。该技术在模具领域的应用,主要集中在TiN系、TiC系、金刚石和类金刚石等硬质涂层,能够改善模具零件的硬度、耐磨性、耐蚀性。
崔玉明等通过化学气相沉积的方法使用直流电弧等离子炬在模具零件表面制备金刚石涂层,经检测在1 470 N载荷下,金刚石薄膜结合力测试区域没有发生开裂和涂层剥落现象,在改进金刚石涂层沉积效率的同时保证了与硬质合金基体之间的附着性,在保证涂层性能的基础上提升了与模具基体的结合力,保证了涂层的使用寿命和服役稳定性。
采用CVD工艺制备模具零件表面涂层的较难工艺问题就是膜基结合力不足和表面粗糙度难控制,解决这2个问题是使这一先进表面涂层技术得以在模具零件制造中广泛推广应用的关键。
物理气相沉积(physical vapor deposition,PVD)技术是使靶材在真空条件下离化成气态原子或分子或电离成离子态,利用低压气体(或等离子体)运输迁移,将具有某种特殊功能的靶材原子、分子或离子反应沉积在基体表面的技术。这种技术广泛用于沉积硬质薄膜,以延长其使用寿命、减少摩擦磨损、提高硬度、改善热性能、抗氧化性、耐蚀性和自润滑性。相对CVD工艺,PVD工艺不需要在高温下进行,有效地解决了涂层和基体中产生高的热应力的弊端,同时通过加强等离子体电离、减少暗区(没有沉积到反应器中的区域)、改进靶材使用、提高原子轰击效率,甚至提高沉积速率和优化气体选择等方法来优化PVD技术,使其发展为具有广阔应用前景的现代表面涂层技术。
使用物理气相沉积技术在模具零件工作表面上沉积硬质涂层,提高了零部件的强度、硬度、耐磨性、抗腐蚀性,同时依靠PVD硬质涂层良好的附着力,保证了模具的服役稳定性,延长了模具的使用寿命。在有色金属压铸领域,压铸模的使用寿命对铸造企业的成本效益和质量标准有重要的影响。模具零件表面暴露的主要应力是热冲击、磨损以及模具中液态铝和铁之间的化学反。